J From the
Trenches

fAIthough 00 development methods and models N
® have been in use for several years, management
techniques optimized for 00 development have not
kept pace. The author participated in several 00
projects and, based on those experiences and the
lessons learned from them, developed a °
management process tailored to 00 development. J

-

Managing OO
Projects Better

Paolo Nesi, University of Florence

following, and in many cases® has replaced traditional software devel-
opment approaches with OO equivalents.?® New schemes have been
proposed for modeling the development life cycle as well.* Unfortunately,
many of these approaches focus on modeling the system development around a
single task or team, rather than considering how to build a specifically object-
oriented system in terms of planning, team structure, and project management.
Thus, the definition of these new OO development methodologies has yet to be
supported by a comparable effort in defining methods and strategies for manag-
ing OO projects, or for modeling the life cycle at both the system and the task and
subtask levels. OO project management also requires integration in effort planning
and process prediction. Traditional models fall short in this regard, too, because they
take an almost entirely bottom-up approach and base their project plans on the
mechanisms of allocating and deallocating people.

ver the past decade, the object-oriented paradigm has gained a large
. O

50 IEEE Software f% July/August 1998 0740-7459/98/$10.00 © 1998 IEEE

From the

IreNnches
Table 1
Signifi cant Statistics For Studied Projects
Project (OF] Language Tools and Number of S Person- People = Teams
Libraries Classes Months
TOOMS Unix C++ Lex/Yacc, 204 16568 415 16 6
CommonView
ICOOMM Windows C++ MFC 193 10870 20 6 3
NT
Qv Unix C++ XLIB, Motif 65 3900 7 4 2
LIOO Linux C++ Lex/Yacc, 165 16020 30 11 5
XVGAlib
TAC++ Unix C,C++ Lex/Yacc, 62 2300 for C, 135 5 2
QV, XLIB 4340 for C++

As a first step toward alleviating these short-
comings, | outline several lessons learned while de-
riving a more efficient model for managing OO pro-
jects. Summaries of these lessons, which represent
the experiences of myself and my colleagues in
managing several small- and medium-size OO pro-
jects over the last seven years, appear in italics
throughout the sections that follow.

Project Profi les

Table 1 shows the profiles, in chronological order,
of some of the projects from which | drew the
lessons described in this article:

¢ TOOMS (Tool Object-Oriented Machine State),
a CASE tool to specify, verify, test, and assess real-
time systems;

¢ ICOOMM (Industrial Control Object-Oriented
Milling Machines), a computerized numerical con-
trol for milling machines;

¢ QV (Q View), a library providing uniform OO
support for Motif and X;

¢ LIOO (Lectern Interactive Object-Oriented), a
lectern and editor for music scores; and

¢ TAC++ (Tool for Analysis of C++), a tool for de-

veloping and assessing C/C++ projects.
Each profile lists the project’s pertinent data, in-
cluding the number of system classes, SC,.., effortin
person-months, number of non-project-manage-
ment people involved, and number of different
teams. SC,., or OO system complexity based on
lines of code, is an evolution of the LOC metric that
also considers class attributes, class definition, and
method interfaces.

Most of these projects were carried out by het-

erogeneous teams that included staff members
from the University of Florence, the Centro Sviluppo
Tecnologicao (CESVIT) research center, and various
companies. Although the project partners were in
separate locations, to improve the homogeneity of
results the various heterogeneous task and subtask
teams assigned to a particular project worked in one
place. Doing so let them use the same “guality man-
ual,” a reference document containing all guidelines
for project development as prescribed by the com-
pany’s general criteria. The teams performed most
of the work using C++, but implemented some
projects in TROL (Tempo Reale Object-oriented
Language), a formal language and model similar to
object-oriented SDL, ObjecTime, and others.

Team Structure And
Organization

A project manager coordinates the subsystem
managers and directs the overall project. When the
project manager adopts the well-known waterfall
life cycle, a clear division is present between the
phases of analysis (requirement analysis and de-
tailed analysis), design (structural design and de-
tailed design), coding (class implementation), test,
and so on. The team organization usually replicates
this division. Different groups work on the same pro-
jectin different phases, and communicate via a few
meetings and documents. These groups may use
different notations and methods. Even if an inte-
grated quality and methodological model unifies
these notations, misunderstandings may still occur
between the many people tasked with drafting and
interpreting the project’s documents. Thus a mis-

July/August 1998 % IEEE Software

51

J From the

Trenches

Analysis Design/code

Test/implement/modify

Maintain

match between consecutive
phases may develop,® which

Effort

Design and
code

Requirements

analysis

Modification
~Maintenance

causes teams to work on wrong
or unrequired functionalities.
Although several integrated ap-
proaches to reduce these prob-
lems have been tried, their results
have been limited by the persis-
tence of different interpretations
and viewpoints within groups
and between groups.

Time In many cases, project man-

agers adopt Larry Putnam’s re-

Figure 1. Putnam’s resource allocation model, which shows project effort as a

function of time.

Requirement acquisition &
high-level analysis

i Project profile

Identification of
subsystems

i Early subsystems
Analysis of subsystems

First general
class collection

High-level
reuse analysis

i Reuse directives
Selection of tools
i Tools
Coarse project planning
i Task relationships

Subsystem-resources
analysis

Cost of
subsystems

Project planning
i Planning
Resource evaluation/selection

Resources
allocation

Detailed plan

Figure 2. Project start-up structure with the most
important products of each phase.

52 IEEE Software ,& July/August 1998

source allocation model,” shown
inFigure 1. As the project evolves,
the dynamic allocation of people
may lead to an increase in the
number of subsystems and in the team’s size.
Typically, management allocates people dynamically,
passing them from one phase to the next to satisfy
incoming deadlines. Although training new people
would avoid this reshuffling, it is often a costly and
self-defeating alternative because it usually entails
the support of skilled people needed elsewhere on
the project.

¢ In our experience, the hierarchical organiza-
tion of a team can be successfully applied to OO
projects. But the project plan, the development life
cycle, and the roles of the project manager and sub-
system managers must be revised as described in
the following lessons.

Project Start-Up

As Figure 2 shows, the project start-up consists
of several phases typically performed sequentially
or only partially overlapped.

We typically perform the requirements acquisi-
tion and high-level analysis, also called user needs
analysis and feasibility study, to

¢ evaluate commercial issues such as benefits
and risks;

+ analyze the technological risks;

¢ examine the requirements with respect to in-
dustry trends and general goals;

¢ define ultimate targets in terms of end users,
environments, platforms, and so on;

¢ define the quality profile of the final prod-
uct; and

¢ define project timing, the most important
milestones, and the critical path.

From the

The project manager and subsystem managers
identify the main subsystems according to a struc-
tural decomposition. The subsystems are, in most
cases, comprised of multiple classes, many of which
are used by other subsystems. This occurs because
in classical OO analysis methodologies, you usually
model the problem domain and not a specific sys-
tem or subsystem.?

Typically at this stage, you strive to model ex-
actly that part of the domain needed for the sys-
temyou're building, and no more, unless reuse con-
siderations prompt you to

undertake extra work. On the [{}igolkt of specialization is frequently due

other hand, during project start-

up you usually have limited |0 POOF @analysis of the system domain.

knowledge of the problem’s

scope, and thus itis best to manage as much of the
problem domain as you can. A too-restrictive mod-
eling performed during the early phases of system
development typically results in hierarchies having
too many complex leaf classes. The presence of too
many leaf classes is frequently due to the lack of
specialization. In turn, the lack of specialization is
frequently due to a poor analysis of the system do-
main. This occurs, for example, when the applica-
tion's problem domain has been neglected in favor
of a limited analysis of the application under de-
velopment. All applications start small and grow
throughout their service life. To start with a re-
stricted analysis frequently leads to an insufficient
class hierarchy. During the analysis the focus should
be on those classes used in several tasks. These are
usually the most important ones for the domain
under analysis or are fundamental to the system.
They include repositors, model symbols, graphic
components, and so on.

In the first part of subsystem analysis, each sub-
system manager must identify the mostimportant
classes of the assigned subsystems. Then, classes
identified by all subsystem managers are organized
in the unique domain model. In OO projects, a sub-
system can be

¢ asubtree or tree,

¢ anumber of independent classes, or

¢ aclassical subsystem, identified by a structural
composition-decomposition process.

¢ We re-extracted the main subsystems from the
general collection of classes by identifying branches
related to the most important classes, usually called
key classes. We reassigned these new versions of sub-
systems to subsystem managers. The two-phase
process | describe regularizes the identification of sub-

IreNnches

systems, improving efficiency by avoiding class dupli-
cation and reducing the dependencies among sub-
systems (and thus among subsystem teams). Each sub-
system or subtask should have from 15 to 30 classes to
be manageable, depending on the role these classes
play in the system. Alarger number usually means that
team members must learn a lot about the system,
while too few classes may lead to people working on
the same class too frequently. A subsystem caninclude

¢ several small classes (basic objects, part of other
classes);

¢ anumber of so-called “key classes” (such as the
root class for persistent objects, a class implementing
the list) and,

¢ among these key classes, a few very important
classes, called engine classes. These are more complex
than the other key classes and cannot always be de-
composed because their complexity derives mainly
from their functional and behavioral aspects.

Instances of engine classes usually control the
mostimportant parts of the application, such as the
database manager, the state machine editor, the
window manager, the event manager, or the inter-
preter. For such classes, the effort—defined as the
hours spent executing a particular task—may be as
much as five times greater than that for normal key
classes. The start-up phase continues with reuse
analysis, in which the project manager and the sub-
system managers identify sources of existing sub-
system parts, classes, or clusters that can be prof-
itably reused in the current project. For each
potential reuse source, the cost of adaptation must
be evaluated before proceeding.

Next, the subsystem managers and project man-
ager identify suitable tools for system development.
These decisions may lead to reiterating from the
subsystems analysis step.

The subsequent coarse-grained project plan
includes

1. analyzing the overall system,

2. defining subsystems (tasks) and subtasks,

3. examining dependencies among tasks,

4. planning time-to-market, and

5. identifying milestones and other target dates.

Determining how many staff-hours are needed
to develop each subsystem and its corresponding
subtasks cannot be done yet because the assess-

July/August 1998 % IEEE Software

53

Tasks

[N

i th cycle (i+1) th cycle

General

&integra-
tion

prototype for progress control.
Each cycle can involve several
tasks and includes, at the system
level, general assessment and risk
analysis.

Working from the project
plan, management selects and
allocates project staff, based on
the skill and experience of avail-
able personnel. In our teams, the
typical efficiency was from 2.2 to

Next
cycle

Figure 3. The macrocycle of the task and subtask development life cycle, and the
microcycle—a simplified version of the spiral model integrated with a modified version

of the fountain model.

54

ment effort must be performed later. During the
subsystsem-resource analysis, the effort for devel-
oping each subsystem and the corresponding sub-
tasks is evaluated in terms of human resources.

+ The number of identified key classes multiplied
by a factor, K, gives an approximate measure of the
final dimension of each system or subsystem in terms
of classes. We found that K is equal to 2 for subsystems
without a user interface and communication with de-
vices, and 4 for subsystems that include the relation-
ships with a complex user interface. We use the hy-
pothesis for the number of system classes to predict
the effort needed for each task by considering the typ-
ical person-hours needed to analyze, design, and im-
plement aclass. In the projects mentioned, this mean
factor is 15 to 40 hours per class; differences depend
on team efficiency and application complexity. We
used the number of class attributes and methods asa
more precise predictive measure of class complexity.

You can now prepare the detailed project plan,
considering at least the temporal constraints iden-
tified in the requirements acquisition and high-level
analysis phases, as well as the number of people
needed for each subsystem and subtask. The plan
must also consider the nature of the life cycle
adopted. In the case of OOP the classic life cycles
are evolutionary and typically prototype-oriented,
such as the spiral or fountain models.#¢ The foun-
tain model leads to an unpredictable number of cy-
cles at the system level because it is too rule-free to
produce repeatable results. This makes it difficult to
predict the duration of the analysis, design, imple-
mentation, and other phases.

¢ At the system level, we used a spiral-oriented
project schedule: two or three cycles of from six to
eight months each that produce a milestone and

IEEE Software % July/August 1998

4 SC,oc points per hour, includ-
ing analysis, design, coding, doc-
umentation, test, and assess-
ment phases.

SYSTEM DEVELOPMENT

After project start-up, the system development
phase begins by activating tasks and subtasks
according to the project plan and the preanalysis
performed during start-up.

Task life cycle

The spiral model is too complex and complete to
be applied at the subsystem level, while the foun-
tain model is difficult to control. The adopted mi-
crocycle, shown in Figure 3, consists of a simplified
version of the spiral model integrated with a modi-
fied version of the fountain model. According to the
fountain model, the first three steps can be locally
iterated by restarting from the first step when strictly
necessary to achieve the cycle objectives. Unlike the
fountain model, the last steps are performed simul-
taneously and only once.

Figure 3 shows that, as in the spiral model, a
task or subtask is typically completed in one or
more cycles, each with a duration of two to four
weeks depending on fixed subgoals and mile-
stones. Given the team members'typical produc-
tivity, you can obtain the number of cycles re-
quired by considering that a task or subtask must
contain from 15 to 30 classes to be manageable.
For example, it requires three cycles of two weeks
each, with a two-person team—a total of 480
hours—to produce from 12 to 32 classes for C++.
Less time will be needed if you are producing key
classes, because fewer classes must be considered
if the subsystem includes key classes. Task and
subtask teams consist of two to three people, in-
cluding the subsystem manager. The develop-

Table 2

Imposed Limits for Class Parameters

Parameter Mean Values Maximum Values
Class complexity 200 1800
) Class complexity, inherited 150 1200
ment process Is a sequence Class complexity, local 50 600
of partially overlapping Number of class attributes 9,27 15,45
steps. We found it advanta- Number of inherited class attributes 6,18 10,30
geous to use an analysis and Number of local class attributes 3,9 5,15
design methodology very Number of class methods 36,90 44,144
similar to Grady Booch's,? Number of inherited class methods 24,60 36,96
because it meshes well with Number of local class methods 12,30 18,48
the management and life- Number of superclasses 2 5,6
cycle models we selected. Number of subclasses 5 30,90

After the design phase, the

same team performs testing,
documenting, and assess-
ment simultaneously. Because consecutive mi-
crocycles partially overlap, team members have
different roles in different contexts.

¢ We observed that the effort spent in docu-
menting and assessing depends quite linearly on the
number of classes, while testing depends on time for
testing classes and their relationships. The first factor
is linear and the second takes a time that depends
more than quadratically on the number of classes,
since interactions among classes exploiting relation-
ships of is-part-of and is-referred-by are frequently
made concrete with several method calls. A small
number of classes per subsystem lets you work in the
first part of the cost evolution curve, where the cost of
testing relationships is much lower than that for test-
ing class relationships. This also depends on the num-
ber of relationships established among classes (an-
other parameter that must be maintained under
control along the development process). Moreover, we
reduced testing, assessing, and documenting time by
improving these processes.

Test activity

Typically, the test activity can last anywhere from
as long as the first three phases combined to less
time than it takes to complete the first phase. We re-
duced the time for testing by preparing test scripts
of test cases and procedures directly in the analysis
phases and, in some cases, by using an automatic
tool for regression testing based on Capture and
Playback.2 This approach is based on two distinct
phases: the capture and the playback. During cap-
ture, the system collects each computer-user and
external-device interaction. The histories of these
interactions are stored in sequential form in a script
file. The histories are reproposed during playback to
the computer interfaces, simulating the presence of
real entities: users, other machines, sensors, and so
on. After each simulated stimulus, the computer’s
responses can be tested to verify that the applica-

tion answers correctly according to its predeter-
mined behavior.

In subsequent cycles, regression testing is per-
formed automatically for those parts that are mainly
unchanged.

Documentation activity

Documentation usually takes much more time
than other activities. Suitable CASE tools for analy-
sis and design can generate a draft version of doc-
umentation, in which details related to the imple-
mentation must be added manually.

¢ Theteam memberwho servesas main designer
of the classes is the best choice for performing this
work. The subsystem manager also must help prepare
the documentation that describes the task status and
evolution, and the decisions carried out in the task
cycle. This part of the documentation helps the project
manager understand and discuss the project’s status
atahigherlevel.

Assessment activity and related mechanisms

Evolutionary development lets you produce
something that can be automatically measured
right from the early phases of the project, when
class definitions are available. We used the class
structure’s attributes and method interfaces to
apply predictive metrics for estimating develop-
ment, maintenance, and other task effort.>° We an-
alyzed values and corresponding trends of a few
metrics and indicators for each task and subtask
class: complexity (as it relates to class effort, main-
tainability, and so on), verifiability index, reuse
index, efficiency, and so on.1011

As Table 2 shows, for classes we imposed specific
profiles, such as number of attributes, number of
methods, class complexity, inherited class complex-
ity, and class interface complexity. When two values
appearinacell, they refer to classes not involved and
involved in the GUI, respectively. Data for these met-

July/August 1998 ,& IEEE Software 55

J From the

Trenches

45 : : : : : : :
FOH NSRS S S R H— S —
S e s S
| e oo oo]

i i i i i i
L5+-—---- - deme- foomoeoo- oo s S oo

S ! ! ! ! ! !

S : : : : : :
Byl I S S R

IS | | | | | |

E ! ! ! ! ! !

=z ! ! ! ! ! !
154-——-—--- 1 T EEEEEEEE EERERRRE b b R
01—l et e
s R e T S S e

0 Ml mom o m | m | | s
0 500 1,000 1,500 2,000 2,500 3000 3,500

Class Complexity

Figure 4. Histogram of the class complexity attribute for project LIOO near the midpoint of the
process’s development. The typical histogram must present an exponential trend, while in this case a

couple of classes exhibited a class complexity greater than 1800.

Task
indicators

Res““ development

Project
database

Team

Task def.
levels

Subsystem

Manager Project

Manager
Result
Company
defined
indicator
levels

Figure 5. Task and project levels in a sample assessment. Only one task is reported.

56 IEEE Software ,& July/August 1998

rics has been evaluated using a
definition developed in my work
with colleagues.>1*

We define these profiles using
the typical histograms obtained
for that metric in other projects,
as shown in Figure 4. When a
class grows beyond its imposed
limits it must be carefully ana-
lyzed and, if possible, corrected.
We accomplish this by, for exam-
ple, splitting the class or moving
the code closer to its parents.’t
Doing so maintains the class’s
quality and ensures control of the
staff effort devoted to the class.

Assessment, the shortest ac-
tivity of those performed in par-
allel, is done by a team member
skilled in OO analysis, with the

From the

IreNnches

e
)
-

Tasks/subtasks

O

e

{@%

DE

SR

&3
ﬁ
B

HC
=

) Time
General meeting

Figure 6. Relationships and integrations among project tasks and subtasks. The dotted lines indicate
the intervals for periodic meetings to discuss integration among classes and clusters by different teams.

help of the subsystem manager. As Figure 5 shows,
the assessment checks that the process satisfies
company metrics and indicators for controlled soft-
ware development. The subsystem managers must
include in the documentation and the project data-
base any strategies for correcting deviations from
the plan.® For our assessments we used a suitable
tool for measuring selected metrics and compar-
ing the imposed profiles with the current ones.

¢ Continuous metrication must be associated
with a continuous revalidation of the indicators
adopted to adjust weights and threshold values, and
for tuning the organization's metric suite. We collected
non-automatically measurable data by filling in an
electronic questionnaire daily with, for example, the
effort of each class (for detailed analysis, design, cod-
ing, and other tasks), the modification of class hier-
archy, the effort for the other activities, and a brief de-
scription of the work. Real and measured values let us
identify the model.

Generalization and integration activity

This phase partially overlaps the next microcy-
cle. To accomplish generalization and integration,
the subsystem manager must first identify the de-
tailed goals of the next microcycle. These goals may
be best defined once the subsystem manager fin-
ishes the current phase and begins full-time work
on the next microcycle.

¢ During this phase each subsystem manager
may meet with other subsystem managers and the
project manager, depending on task relationships, to

1. identify new detailed requirements for general-
izing classes and clusters developed so that they can
be used in the whole system;

2. provide other teams with the current version of
software developed in the corresponding task or sub-
task, along with its documentation, test, and assess-
ment reports;

3. discusswith the project manager how to correct

problems identified by the assessment activity.
As regards point 2, the other task and subtask teams
will use the results produced starting from their next
detailed analysis phase, as shown by the arrows in
Figure 6.

Task relationships

The dotted lines in Figure 6 show that, about
every two to four weeks, depending on the length
of the microcycle, project task and subtask teams
hold periodic meetings to exchange information. In
these meetings, only the choices made in the analy-
sisand design phases are discussed, with the intent
of improving integration among classes and clus-
ters implemented by different teams. Thus, the pe-
riodic meetings address the general aspects of
analysis and design, while restricted meetings be-
tween the team and its subsystem manager address

July/August 1998 ,& IEEE Software

57

From the

Trenches

Assessment,

1st cycle documentation, & test

by Design &
coding

Effort

Y
Y
Y
kY
Y
LY
Y
Y

Detailed
Y
analysis
\
3

2nd cycle

Total effort

Generalization
& integration

Time

Figure 7. The model adopted for task and subtask effort as a function of time. The dashed line represents general effort.

58

more detailed and technical problems.

¢ Periodic meetings avoid class duplication and
facilitate the adoption of uniform notations in the
project database’s quality manual for the selection
of class, method, and attribute names; for compiling
documentation; for preparing test scripts; and so on.
To improve control and uniformity, plan general
meetings with all team members and subsystem
managers

+ when animportant task is completed,

+ whenanimportant change to the project struc-
ture and management is needed, or

+ fordiscussing prototypes of the whole systemor
time-consuming milestones and deliverables.

At general meetings, everyone explains what
they are doing and are going to do, then comments
on issues raised by the others. Such meetings im-
prove the code’s uniformity and quality because
they let all points of view be taken into account.
They also have a strongly positive affect on morale
and motivation. General meetings can even help re-
duce the fuzzy thinking of programmers who some-
times get distracted by a trivial task that could be
safely neglected, even if doing so caused inconse-
quential errors in the finished product.

Team people

Traditional project and subsystem managers typ-
ically lack the training and expertise to manage OO
projects. This shortcoming becomes more pro-
nounced when using our approach, which requires
management participation in several meetings that
address technical problems.

¢ As shown, the roles of the project manager
and subsystem managers are quite different than in
traditional projects where, during the development,

IEEE Software ,& July/August 1998

they only supervise the work of all groups, defining
documents’structure, instruments, and planning.
According to our model, the project manager can
profitably manage the project only if he or she di-
rectly knows how the problem domain has been cov-
ered in terms of classes and class relationships.
Moreover, the subsystem manager must participate
actively in the task and subtask development by an-
alyzing details and designing and implementing
specific parts, or parts related to other tasks.

Effort planning

Models such as the Putnam Resource Allocation
model, Jensen’s model, and COCOMO are mainly
suitable for single-team projects.’2 Although some
versions of these models can be applied to multi-
team projects, they entail considerable dynamic al-
location of human resources during the design and
coding phases at the task level, as Figure 1 shows.
At the subsystem level, this means it is difficult to
predict costs, especially if you use traditional devel-
opment models. With OO methodologies, on the
other hand, effort is shifted from the design phase
to that of analysis. System development starts by
using a bottom-up approach and then reverts to a
top-down one.# Doing so moves the peak of the ef-
fort curve to the analysis phase, but the problems
related to dynamic allocation persist because the
traditional effort allocation method remains. This
problem becomes more severe when you use the
Putnam model for each cycle of the spiral develop-
ment life cycle, because it calls for the allocation and
deallocation phases to be performed at each cycle,
with a consequent increase in overhead costs.

Using the alternative approach shown in Figure
7,we report the effort for a task or subtask as a func-

From the

tion of time. | constructed this idealized diagram by
observing what happens when our micro life cycle
is applied across several OO projects. The graph in-
cludes the first cycle’s detailed analysis phase, when
human resources are allocated. The subsystem
analysis starts with the allocation of the subsystem
manager and continues until all

other team members have been

assigned The designand coding || D@VElOpMenNt teams of more than four
phases follow the analysis and |ipople result in decreasing productivity.

are performed by the same team,

with a constant number of peo-

ple. Each cycle overlaps the next, with team mem-
bers constantly allocated to the task (represented
by the dashed line in Figure 7), but performing dif-
ferent duties depending on the cycle.

¢ Because no clear separation exists between the
life-cycle phases of OO methodologies, allocating a
constant number of people to the task team is consis-
tent with the OO approach, letting the same people
who perform the analysis work on all other phases.
This leads to a reduction of effort and less risk of mis-
understanding. The lack of clear separation stems
mainly from the impossibility, in many cases, of sepa-
rating the development phases—for example,
whether to include or exclude object and class spe-
cialization and relationship identification from the
analysis phase. All these relationships have a strong
impact on cluster identification and on the general do-
main analysis. Some methodologies are more flexible
while others are much too rigid in this regard. Further,
during eachsingle cycle there are periodsin which one
team member stillworks on the analysis while the oth-
ers proceed to the other phases. The project manager
must try to distribute the project staff 's efforts uni-
formly throughout the project or at least along the sin-
gle tasks. Uniformity of effort also guarantees consis-
tent quality and efficiency, improves controllability and
effort predictability, and avoids the extra training re-
quired by dynamic allocation.

When the team needs more effort to perform a
cycle, project management lengthens the phases
as depicted in the second microcycle of Figure 7.
This does not conflict with the schedule if the total
effort needed to develop a task (represented as the
area under the curve) remains the same. The effort
predicted for each task, and that of the whole pro-
ject, can be adjusted after each task cycle in relation
to the trend of normalized indicators,>° such as

+ the increment of task classes per time unit,

+ the increment of class complexity per time
unit,

IreNnches

+ the increment of task complexity per time
unit,

+ the relative difference between the number of
classes and the predicted number, and

+ the ratio between internal and external class
complexity.

If project management predicts insufficient ef-
fort for the planned trend, more effort is allocated
by, for example, increasing the next cycle's dura-
tion. If this is infeasible because of task deadlines
or other factors, project management divides the
task into two subtasks under a single subsystem
manager. In this case, dynamic allocation takes
place in the analysis phase.

Task division can, however, generate mis-
matches. To reduce such problems, project man-
agement can perform the real division into subtasks
after the detailed analysis. In some cases, task divi-
sion is infeasible or too expensive because it would
affect too many related classes. In such cases, the
team can be increased to at most four people, some
minor classes can be reassigned to related subsys-
tems, or both. Larger teams would result in de-
creasing productivity and increasing cohesion
among subsystems.

+ Using our microcycle approach requires more ef-
fort from the project manager than that needed to
manage traditional projects: we obtained a value of
nearly 210 hours per year for a project of four person-
years. This value must be scaled for larger projects,
which contain a higher number of subtasks, and thus
require additional meetings and greater technical in-
volvement by the project manager.

I have found traditional methods inadequate for
managing OO projects, for several reasons:

+ There is a sizeable gap between OO software
development methodologies and diffuse manag-
ing approaches.

¢ Thelife cycles usually adopted focus too much
on single-task projects and structured or functional
methodologies.

¢ Managers lack prior experience in the adop-
tion of OO indicators for controlling system devel-
opment at both project and task levels.

¢ Organizations share a deeply ingrained tradi-

July/August 1998 ,& IEEE Software

59

From the

Trenches

tion of allocating and deallocating human resources
among different projects.

¢ Project and subsystem managers lack the
technical expertise necessary to profitably manage
OO0 projects. Thus, to be effective, the OO approach
I've proposed must be introduced throughout the
whole organization.

My project experiences and those of my col-
leagues have enabled us to create and fine-tune a
stable OO management and development model
that addresses these shortcomings. Our method is
now being used by several organizations that man-
age internal and multipartner Esprit projects. On
these projects, the method has predicted final ef-
fort with errors lower than 10 percent, satisfying the
project organizations’ early-defined quality and
company requirements. We obtained these results
by facilitating strong collaboration among team
members and increasing gratification and motiva-
tion according to the lessons and guidelines I've de-
scribed. Other, longer-term benefits have resulted
from our approach as well. For example, some team
members have exhibited a growing capability to
manage projects after they participated in a project
using our method, which distributes management
tasks more evenly across the team hierarchy. [

ACKNOWLEDGMENTS

| thank the following project managers and subsystem
managers. For project TOOMS: U. Paternostro of the
Department of Systems and Informatics; M. Traversi and M.
Campanai of CESVIT; F. Fioravanti, M. Bruno, and C. Guidoccio
of DSI. For project TAC++: A, Borri of CESVIT and T. Querci of
DSI; S. Perlini. For project ICOOMM: M. Perfetti and F. Butera
of ELEXA. For the QV/MOOQVI project: T. Querci; L. Masini, M.
Caciolli,and L. Fabiani. For project LIOO: F. Bellini, N. Baldini,
S. Macchi, A. Mengoni, and A. Bennati. For the projects of se-
ries MICROTelephone: M. Traversi, G. Conedera, D. Angeli, C.
Rogai, and M. Riformetti of OTE S.r.l. For project INDEX-DSP:
M. Montanelli and P. Ticciati of SED S.r.I. A warm thanks to
the many developers who have worked and are working on
these and other projects with me.

REFERENCES

1. G.Bucci, M. Campanai, and P. Nesi, “Tools for Specifying Real-
Time Systems,” J. Real-Time Systems, Mar. 1995, pp. 117-172.

2. G.Booch, Object-Oriented Design with Applications, Addison
Wesley Longman, Reading, Mass., 1994.

3. RJ. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object
Oriented Software, Prentice Hall, Upper Saddle River, N.J.,, 1990.

4. B.Henderson-Sellers and J. M. Edwards, “The Object Oriented
Systems Life Cycle,” Comm. ACM, Sept. 1990, pp. 143-159.

5. P.Nesiand T. Querci, “Effort Estimation and Prediction of
Object-Oriented Systems,” J. Systems and Software, to appear,
1998.

6. B.W.Boehm, “A Spiral Model of Software Development and
Enhancement,” IEEE Software, Sept. 1988, pp. 61-72.

IEEE Software ,& July/August 1998

7. L.H.Putnam, “A General Empirical Solution to the Macro
Software Sizing and Estimation Problem,” [EEE Trans. Software
Eng., July 1978, pp. 345-361.

8. P.Nesiand A. Serra, “A Non-Invasive Object-Oriented Tool for
Software Testing,” Software Quality J., Vol. 4, No. 3, 1995, pp.
155-174.

9. W.Liand S. Henry, “Object-Oriented Metrics that Predict
Maintainability,” J. Systems Software, Vol. 23, No. 2, 1993, pp.
111-122.

10. P.Nesiand M. Campanai, “Metric Framework for Object-
Oriented Real-Time Systems Specification Languages,”J.
Systems and Software, Vol. 34, No. 1, 1996, pp. 43-65.

11. F. Fioravanti, P. Nesi, and S. Perlini, “Assessment of System
Evolution Through Characterization,” Proc. IEEE Int'l. Conf.
Software Eng., IEEE CS Press, Los Alamitos, Calif., Apr. 1998, pp.
456-459.

12. S.D.Conte, H. E. Dunsmore, and V. Y. Shen, Software
Engineering Metrics and Models, Benjamin/Cummings, Menlo
Park, Calif., 1986.

About the Author

Paolo Nesi is an assistant professor of in-
formation technology and a researcher
with the Department of Systems and
Informatics of the University of Florence.
His research interests include OO tech-

nology, real-time systems, quality, test-
ing, formal languages, physical models,
and parallel architectures. He holds the
scientific responsibility for high-performance computer net-
working at CESVIT, a high-tech agency for technology trans-
fer. He also belongs to the editorial board of the Journal of Real-
Time Imaging.

Nesi received a Laurea in electronic engineering from the
University of Florence and a PhD in electronics and informat-
ics from the University of Padoa, Italy. He is a member of IEEE,
the International Association for Pattern Recognition, Taboo
(the Italian association for promoting object technologies),
and AllA (the Italian association on artificial intelligence).

Address questions about this article to Nesi at Department of
Systems and Informatics, Faculty of Engineering, University of
Florence, Via S. Marta 3, 50139 Florence, Italy; nesi@dsi.unifi.it;
http://www.dsi.unifi.it.

